Tagged: ,

Viewing 3 posts - 1 through 3 (of 3 total)
  • Author
    Posts
  • #1322

    Nowadays Chatbots are integral parts of a website. It provides automatic user interaction and support. If you have developed a chatbot in Python, share your experience on the chatbot development steps.

    #1323
    Tatwamashi Panda
    Participant

    `import nltk
    from nltk.stem import WordNetLemmatizer
    lemmatizer = WordNetLemmatizer()
    import json
    import pickle

    import numpy as np
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Activation, Dropout
    from tensorflow.keras.optimizers import SGD
    import random

    words=[]
    classes = []
    documents = []
    ignore_words = [‘?’, ‘!’]
    data_file = open(‘intents.json’).read()
    intents = json.loads(data_file)

    for intent in intents[‘intents’]:
    for pattern in intent[‘patterns’]:

    #tokenize each word
    w = nltk.word_tokenize(pattern)
    words.extend(w)
    #add documents in the corpus
    documents.append((w, intent[‘tag’]))

    # add to our classes list
    if intent[‘tag’] not in classes:
    classes.append(intent[‘tag’])

    # lemmaztize and lower each word and remove duplicates
    words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
    words = sorted(list(set(words)))
    # sort classes
    classes = sorted(list(set(classes)))
    # documents = combination between patterns and intents
    print (len(documents), “documents”)
    # classes = intents
    print (len(classes), “classes”, classes)
    # words = all words, vocabulary
    print (len(words), “unique lemmatized words”, words)

    pickle.dump(words,open(‘words.pkl’,’wb’))
    pickle.dump(classes,open(‘classes.pkl’,’wb’))

    # create our training data
    training = []
    # create an empty array for our output
    output_empty = [0] * len(classes)
    # training set, bag of words for each sentence
    for doc in documents:
    # initialize our bag of words
    bag = []
    # list of tokenized words for the pattern
    pattern_words = doc[0]
    # lemmatize each word – create base word, in attempt to represent related words
    pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
    # create our bag of words array with 1, if word match found in current pattern
    for w in words:
    bag.append(1) if w in pattern_words else bag.append(0)

    # output is a ‘0’ for each tag and ‘1’ for current tag (for each pattern)
    output_row = list(output_empty)
    output_row[classes.index(doc[1])] = 1

    training.append([bag, output_row])
    # shuffle our features and turn into np.array
    random.shuffle(training)
    training = np.array(training)
    # create train and test lists. X – patterns, Y – intents
    train_x = list(training[:,0])
    train_y = list(training[:,1])
    print(“Training data created”)

    # Create model – 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
    # equal to number of intents to predict output intent with softmax
    model = Sequential()
    model.add(Dense(128, input_shape=(len(train_x[0]),), activation=’relu’))
    model.add(Dropout(0.5))
    model.add(Dense(64, activation=’relu’))
    model.add(Dropout(0.5))
    model.add(Dense(len(train_y[0]), activation=’softmax’))

    # Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss=’categorical_crossentropy’, optimizer=sgd, metrics=[‘accuracy’])

    #fitting and saving the model
    hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
    model.save(‘chatbot_model.h5’, hist)

    print(“model created and saved”)

    #1324
    Tatwamashi Panda
    Participant

    import nltk
    from nltk.stem import WordNetLemmatizer
    lemmatizer = WordNetLemmatizer()
    import pickle
    import numpy as np

    from tensorflow.keras.models import load_model
    model = load_model(‘chatbot_model.h5’)
    import json
    import random
    intents = json.loads(open(‘intents.json’).read())
    words = pickle.load(open(‘words.pkl’,’rb’))
    classes = pickle.load(open(‘classes.pkl’,’rb’))

    def clean_up_sentence(sentence):
    # tokenize the pattern – split words into array
    sentence_words = nltk.word_tokenize(sentence)
    # stem each word – create short form for word
    sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
    return sentence_words

    # return bag of words array: 0 or 1 for each word in the bag that exists in the sentence

    def bow(sentence, words, show_details=True):
    # tokenize the pattern
    sentence_words = clean_up_sentence(sentence)
    # bag of words – matrix of N words, vocabulary matrix
    bag = [0]*len(words)
    for s in sentence_words:
    for i,w in enumerate(words):
    if w == s:
    # assign 1 if current word is in the vocabulary position
    bag[i] = 1
    if show_details:
    print (“found in bag: %s” % w)
    return(np.array(bag))

    def predict_class(sentence, model):
    # filter out predictions below a threshold
    p = bow(sentence, words,show_details=False)
    res = model.predict(np.array([p]))[0]
    ERROR_THRESHOLD = 0.25
    results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
    # sort by strength of probability
    results.sort(key=lambda x: x[1], reverse=True)
    return_list = []
    for r in results:
    return_list.append({“intent”: classes[r[0]], “probability”: str(r[1])})
    return return_list

    def getResponse(ints, intents_json):
    tag = ints[0][‘intent’]
    list_of_intents = intents_json[‘intents’]
    for i in list_of_intents:
    if(i[‘tag’]== tag):
    result = random.choice(i[‘responses’])
    break
    return result

    def chatbot_response(msg):
    ints = predict_class(msg, model)
    res = getResponse(ints, intents)
    return res

    #Creating GUI with tkinter
    import tkinter
    from tkinter import *

    def send():
    msg = EntryBox.get(“1.0”,’end-1c’).strip()
    EntryBox.delete(“0.0″,END)

    if msg != ”:
    ChatLog.config(state=NORMAL)
    ChatLog.insert(END, “You: ” + msg + ‘\n\n’)
    ChatLog.config(foreground=”#442265″, font=(“Verdana”, 12 ))

    res = chatbot_response(msg)
    ChatLog.insert(END, “Bot: ” + res + ‘\n\n’)

    ChatLog.config(state=DISABLED)
    ChatLog.yview(END)

    base = Tk()
    base.title(“Chatbot”)
    base.geometry(“400×500″)
    base.resizable(width=FALSE, height=FALSE)

    #Create Chat window
    ChatLog = Text(base, bd=0, bg=”white”, height=”8″, width=”50″, font=”Arial”,)

    ChatLog.config(state=DISABLED)

    #Bind scrollbar to Chat window
    scrollbar = Scrollbar(base, command=ChatLog.yview, cursor=”heart”)
    ChatLog[‘yscrollcommand’] = scrollbar.set

    #Create Button to send message
    SendButton = Button(base, font=(“Verdana”,12,’bold’), text=”Send”, width=”12″, height=5,
    bd=0, bg=”#25cdf7″, activebackground=”#3c9d9b”,fg=’#ffffff’,
    command= send )

    #Create the box to enter message
    EntryBox = Text(base, bd=0, bg=”white”,width=”29″, height=”5″, font=”Arial”)

    #Place all components on the screen
    scrollbar.place(x=376,y=6, height=386)
    ChatLog.place(x=6,y=6, height=386, width=370)
    EntryBox.place(x=128, y=401, height=90, width=265)
    SendButton.place(x=6, y=401, height=90)

    base.mainloop()

Viewing 3 posts - 1 through 3 (of 3 total)
  • You must be logged in to reply to this topic.